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Abstract

A quasilinear theory is formulated which includes the microscopic fluctuation
fields as well as the coherent waves, The study emphasizes those eases in which
the propagating mode of the fluctuation field gives rise to a dominant contribu-
tion to the particle correlation. In other words, in these cases the spontaneous
Cerenkov emission of plasmons can play a more important role than the two-
particle collision process. The instability which is responsible for the turbulence
can be of cither electrostatic or electromagnetic, or of mixed nature, The effect
of an external magnetic ficld is also considered in the present theory, The final
result is valid for an arbitrary ratio of the encrgy density of the coherent wave
to that of the fluctuation field, although the condition of weak turbulence is
imposed throughout the analysis.
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A Unified Quasilinear Theory of Weakly Turbulent Plasmas

i. introduction

The existing theories concerning weakly turbulent
plasmas may be grouped into two categories; in one,
the interaction between the coherent wave and the reso-
nant particles is emphasized, and the other is concerned
with the effect of correlation, In the former, which is
called the quasilinear theory in the literature (Refs. 1-7),*
correlation is completely neglected, and in the latter
(Refs, 9-16), the macroscopic waves are totally ignored
under the assumption of homogeneous plasma. Evidently
the two theories are concerned with two extreme situa-
tions, For instance, if we define a ratio I" such that

il

T
energy associated with microscopic fluctuation field
energy associated with coherent oscillation —

mle

(1)

'For other publications concerning the applications of the quaosi-
linear theory to specilic problems, see Ref, 8.
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the quasilinear theory deals with the case '~ 0 and, on
the other hand, the theory emphasizing correlation is
concerned with the limit T w0,

Intuitively one may think that the condition P < <1
describes a more realistic plasma, and thus the quasilinear

‘theory seems to be more interesting, However, we want

to point out that the two theories are complementary.
For example, in the quasilinear theory, we assume
implicitly that the quasilinear stabilization process is
characterized by a time scale much shorter than the
characteristic time for the establishment of pasticle cor-
relation. This implies that the validity of the quasilinear
theory cannot be fully appreciated unless we can first
understand how the plasma turbulence affects the particle
correlation, In general, three fundamental processes
determine the particle correlation; their relation may be
expressed as follows:

_ {by virtue of collective processes { (A)
Correlation (collective interaction) (B)
of particles |

by collisions > (C)




whore

(A) = propagating mode of the microscopic fluctun-
tion ficld originated by both stimulated emission
(or absorption) and spontancous emission

(B} = nonpropagating (heavily damped) mode of the
fluctuntion field, contributing to the dynamie
shiclding phenomenon

(C) = direct particle encounters

For turbulent plasmas in many cases, process (A) may
prevail over processes (B) and (C), In this memorandum
we shall pay specinl attention to these cases, Since the
effective correlation time may be greatly shortened in
these cases (this phenomenon is attributed to the en-
hanced fluctuation of the micioscopic density and fleld
due to the presence of instability; see Ref, 17 for pub-
lications on the effeet of collective processes on various
relaxation times in a stable plasma), it is desirable to
include the contribution from the [luctuation field asso-
ciated with the instability,

In the subsequent discussion, we shall restriet our
analysis to tho weakly turbulent plasmas, in which both
mode-coupling and particle-trapping processes (Refs. 8
and 18} arc negligible, Morcover, since most instabilities
exist in magnetized plasmas, we shall include the effect
of an cxternal magnetic field. For the sake of generality,
both electrostatic and electromagnetic modes will be con-
sidered so that the theory is useful for plasmas with an
arbitrary value of 8 (ie,, the ratio of fluid pressure to
magnetic pressure), The present theory is intended to
bridge the usual quasilinear theory and the kinetic theory
for a homogeneous plasma, Consequently, the result is
valid over the complete range of 1,

From the result of this work, we shall see that the
smallness of the ratio defined in Eq, (1) alone is not
suflicient to justify the neglect of correlation. An addi-
tional criterion must be considered; that is,

of plasmons with i of plasmons with the

stimulated emission / spontaneous emission
>>
momentum k same momentum

(2)

Evidently, in many cases, this condition is violated at a
later stage of the relaxation process in the usual quasi-
linear theory. For instance, {1) in the one-dimensional
“bump-on-the-tail” problem (Ref. 18), when the platean
is asymptotically formed and (2) in the case of ion-wave

Instability, when the spontancous emission may become
significant shortly ofter an initial stago of evolution he-
cause of the high population of resonant electrons, It is
txue that in the first instance the contribution from the
propagating mode of the fluctuation feld to the cor-
relation may be expected to be of the same order of
magnitude ns tho collisfonal process and, in order to be
consistent, one should rlso inelude the latter effect,

To improve the present work and to extend it to strong
turbulence is indeed desirable, Perhaps the methods sug-
gested by Dupree (Ref, 19) and Nishikawa (Ref. 20) can
be unified and generalized.

. Mathematical Formulation

The Klimontovich cquations (Refs, 21 and 22) of a
multi-species plasma including both electrostatic and
electromagnetic interactions can be expressed as follows:

oN, e v oN,
T, +y VNH’[ Ec XB[] v

+ G (E’” A % Bm) . N, = () (3)
p” ) ov

ey

T '
oK +§EE e,./cl"uN,,(r,v,t)v-—VXB'"=O

c ot ¢
]

(4)

"
{fa—g—+v><m’rlzo (5)
vV B" =0 @)

VB = 45 E [ fd“ uN, (l‘, v, !} (7)

where the subscript s designates the particle species,
B, denotes a uniform external magnetic field, B and B™
are the microscopic electromagnetic fields, and N, (r, v, 1)
is the random density, which may be defined as

N, (5, v, 1) =Za [r = £0t (8] 8 [v = vt (8)] (8)

In expression (8), ry () aud vy (t) are the position and
velocity vectors at a time ¢ of the ith particles which
belong to the s-species, The derivation of these equations
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U S e

may be found in Ref, 23, Now weo Introduce the Fourier
speetral resofution of the microscopie quantities

E(r,8) == En(t) elker )
=
B (r, ) =2 > BB et (10)
"
Na(r,v,t) = Nk (v, t) gk * (11)
2

Correspondingly, we obtain

ONY ¢, oNY
N m,( XB‘) g
- G T Y / M
= Z;{;(Lk-l- : xnz;,.). SO
k
oNk " BN’,','
-é"t-+ilc v N& I-'-;;-;;XB,, 5y
) " BNB T
+ "“(E“ -+ X B ‘) aV + "ln (Bk“h"
4 N ¥
+ '5' X B;_,"}_...> * —B;L = () (13)
1 aEm Fig
—_—k __ moa ; (- ‘
z ol ile X B} + p E a,.fd"va,, 0 (14)
&
i
2 kXD =0 (15)
k*B2=0 (16)

ke L = 4q Z g,,/d“ oNk (v,t) (17)

Here we consider
B:) = [1:6 =0

In the following, we shall assume that the last term in
Eq. (13) may be dropped, in other words, we consider
that mode-coupling interaction is negligible. Moreover,
we shall take the ensemble-averaged value of Eq. (12)
and obtain

oF, oF,
T m,,( XB“)' v

'“"‘\e,.a[

= e T et ——

e[ EnNy + x| as)
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where the symbol () denotes the ensemble-averaged
value and the relation

(N (v, 8)) - By (v, 8) (19)
has been wsed, In Eq, (19), F, is the one-particle distri-
bution function of the s-speeles partieles, which is inde-

pendent of spatial coordinntes; n, i the average number
density of the same species,

Equation (18), in principle, represents the desived
kinetic equation, although the right-hand terms are to
bo determined. The correlation functions (5", N¥) and
(B". N¥} can be derived from Eqs. (13) through (17), How-
over, before going further, some useful definitions wad
relations should be introduced, First we shall designate

(N{; (v, £)) == n, .fﬂ (k) v, t) (20)

Evidently, if &, (r, v, t) is the distribution function of the
s-species, &, may he expressed as

(v, 1) +Zf,, (k,v,t)e'kr

(21)

£y (1, v, t) = {Na(r,v, 1) (r )

Moreover, we see that

(N (v, v, 8) Nr (r, v, 2))
= 3 SV (v, ) MY+ (v exp [Tk x o+ (K = 1) v
kr

= (N} (v,5) Ny (v, 1))
+ S ANE (M) N (V) exp [tk (r —1)]
k#0
+ 3 SUNE(v, ) NE-R (v Eyexp [Tker 4+ i (K — k) +x']
k#o k¢
=0, Fy (v, ) Fp (V' 1) + 0y 1, G, (0, v, V', 1)

Ay 8ar (Vv = V) Fy (v, )
A+ 3 {1ty Gar (v, ¥, 8} - 100 8 (v — V) 85, Fy (v, 1)

kzo

oy fs (v, 8 £ (—k, v, 1)} exp [ike (v ~ ¥')]
2 3 {ngn, gar (kK =k, v, v, 1)

+ kw0 i
+ g8 (v —v)fa (K — kv, 1)

+ nyn,fs (k, v, 8) fr (K — Kk, v, 1))

X exp [iker 4+ i (k' —k)-r'] (22)




where Gy and g, represent the Fourfer components of
the pair-correlation function P,, (sce Ref. 24 for defini-
tion), or we may write

P (0,0, v, v, 1) = 2,G'.,,(k v,V 1) eikr
E E gdr(kl k! kr Y, V’r t)
20 k
X ooxp [iker 4 {(k' = k)x') (23)
From Lq. (22), wo obtain by comparison that
(NY(v, )N B (v 0) = g e fo (K v, ) fo (=K, V', 8)
+ 1y i Gy (k, v, v/, £)

+ Ny 8pr 8 (v = V) Iy (v, 1) (24)

This relation will be useful in discussions presented in
later sections,

Ill, Initial-Value Problem

Now we intend to solve an initial-value problem ac-
cording to the following equations:

X ¥
B ey g 222 2
ot m, ¢ ov
ey iy or,
“f- T"(EL }- XB;,) v s 23 (} (25)
l 4 " .
" ar’ - {5 c,,‘/d.dqu’,;(v,t)-—ikXB;.-=0
' (26)
1 9B; _
=~ kX E =0 (@7

Two points should be noted: (1) for simplicity, we have
dropped the supelacrlpt m in the fields E” and B” and
should keep in mind that these fields are microscopic
ones, and (2) in Eq, (25) we have replaced N by n, I,
(or, in ather words, neglected 8N?), Such an approxima-
tion does not a[fect the frst-order theory (in the sense
discussed by Dupree in Ref. 25) since the error in the
evaluation of the function (E., N¥) is of second order,

Solving Lq. (25) by characteristie integration aleng the
particle orbit, wo find a formal solution of N%; that i,

Ni(v, 1) = exp [=1ke v, (8)] Né(v, (1),0)

- 1:-;5:.. ﬂl droxp [=ik-r, ('r)]{E;: (£ 1)
Va (1') X By (t = 1) } . _BF 55:’61‘()1')) (28)

where r, (8} and v, (1) satisfy the following equations of
motion:

S8 v (29)

dvi(8) _ _B_:. I:Ek () - 22 (t) =21 ¢ B, (t)] (30)

tngether with the initinl conditions

r, (0) == 0 (31)
and
va(0) = v (32)

Wo notice that Egs, (25), (26), and (27) resemble the
linearized Vlnsov equations. This explains why the in-
stability associnted with the macroscopic wave may also
happen to the microscopie wave., In the following we
postulate that ench Fourier component Ey, and By, may be
described by two distinet time varinbles, say ¢ and e,
where ¢ is a small dimensionless parameter; one describes
the fast oseillations and the other records the slow ampli-
fication. Although the fundamental notion of the multiple
time variables is similar to that of Krylov and Bogoltubov
(Ref. 26), the only purpose of doing this here is to sim-
plify the Laplace transform method to be used later,?

To proceed with this discussion, we shall write
Ly = E (4, cf) (33)
B;; = By (¢, et) (34)

*I'he Inftinl condition of the microscopie density N 1s not “smooth,”
ay wo enn see from expression (8), Tho ensemble-averaged value
of the binary product of these initial conditions will contain a “sclf-
correlution” part, It §s this part that eventunlly gives rise to the new
contribution which the usual quasilinrar theory does not provid,

*This technique was used in Section 18 of Ref, 21. Although the
discussion there Is concerned with the stable case, extension to
weakly unstable plasma can be made without difflculty.
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Hence we shall introduce a Loplace transform with
respeet to the fast time varinble ¢; i,

&0 J0

Nk (y,0,¢t) =5 lim /“'dt oxp {fut = At) NE (v, 8, &l) (35)

Exlo,ef) © 1 jm([t oxp (It = At)Ex (2, et) (36}

a=ed

By (o, ef) = lim f "dtoxp fut = A)By(el)  (87)

A=0 Jo

where o s real, From (28) and (35), we obtain

N, (v, 0, et) = lim f ? At oxp [t —~ at = 1k oxa (8)]

Ao J0

X{N’;‘(v. (6),0)= ':;l":, ("' @ s B0 _0))

¢

OF, (va (1) e
v (D } - Jim 228 M j; dt exp [{or ~ &r — iker, (1)]

A=
X f X exp (lur” — A7) [Ek (', ') V-m(‘)
Ja
_ , ol (vy (2
X ) ] - L) 9)

where we have made use of the relation

[”dre'mr B, = %f“’dre'm(k X )+, =0)
[} 1]
(39)

which is obtainable from Eq. (27).

If a denotes a unit polarization vector which is parallel
to the field Ey, the last term in Eq, (35) can be written as

[Nﬁ (V, iy L’t)]llml.
= — lim 22 rwd-r exp [fur ~ Ar = tker, (7)]
a-vg T .ln

(aevi(r) k= (keva(s))n
X |:n + — :|

u

. %‘%‘;(Tt)l j; ” d+’ exp (fur’ — A7') Ei (v, ct)
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=G (w) f " dv oxp (for’ = A7) Ex(v', er')
13

z2 lim G(m)

Aar

dr' oxp (for’ = Ar')

oLy (r  ef)

X {1-;,, (' et) e (e = t)» + 0O ‘)}

ot C (o) B (o ef) ?f?-’-%‘—-'ﬂ 4+ 0 (e2)

s = lim 228 7 gy {[E}; o, ef) -k oEx{o,et) D 3]

a<g 1 Jfo o oo
X [ﬂxp [for = &r = tkex, ()]

(k*va(r)) n)

1

arai-——jvzf; ”]} + 0(e) (40)

% ((1 e Qg‘h (f)) k ~

Heoreafter we shall nogleet the second-order terins, Re-
turning to Eqs. (26) and (27), and making uso of Eqs, (38)
and (40), we find

[w? e} (k) — c* K2 84y + ¢* ki ky) Ef (v, ot)

etk ky -t k28 Vol (w, ef)
‘i“fu}-—[ iRy - i) -} mﬁu (k,m)]__ﬁ;'jt_—

= H{ (k, w) + K3 (k, o) (41)

where
Ht = =~ i’if‘muiz: ey fd“ vV

% f " dtoxp [fat — At — Tkory (0] NE(va(0,0)  (42)
K¢ = —i [k X By (¢ = 0)] + fu Xy (¢ = 0)

i e,fd‘*vv
A0
a

~ 4 llm

X/wdtexp [fut — At — tkex, (t)]
0

1y By _(v,, () X By (t = 0)) ] oLy (v4 (t)) (43)

M, ¢ ova (t)

X




4 L) H
£y (kyw) = 84; + -li-lnn 2 n;f fd“uu.

W oAny 3
2

% j " dtoxp [t — At — tkeox, ()]
1]

- =R S

(44)

In €4,(k, 0), which is the usual dielectrie tensor, the sub-
seript -+ indicates that the real frequency o should be
constdered as the limit of a complex frequency with a
vanishing positive imaginary part. Let us write

&5y (k,w) = Re €}, (k,u) + i Imef; (k, w) (45)
Hereafter we shall consider that Ime}; is of O (e) in the
transparent region, Neglecting the high-order term in

Lq, (41), we find, by collecting the real und imaginary
parts, that

a{v*Reej; — ¢ k3 8y - Ak Ryl oy B =
Re ([HY (k,0) + K} (k, 0)] B} a;} (46)

ct kt 8{3 - ¢t kik;

[0}

2u® (I;ImE” (IjEf‘| m 0 [a‘(

+ mR@é,,) a,:| alzﬁ

where Ef = Ey(w,t) B} {0, t), and E} denotes the complex
conjugrte of Ly Obviously, from Eq, (46), we obtain the
dispersion cquation

|2 Reey (ko) ~ ¢ k#8454 c* ki ky| = 0 (48)

Thus, in the transparent region, Eq. (47) may be re-
written as

?-

0
JRRAERY o . + =LA
o (w*a; Re e}, ay) 7

= —2wa; Im €}, a; B + 2Im [(HY + K3) @y E2] (49)

Equation (48) is uscful in the subsequent discussion.

IV. The Equation of Wave Amplitude

If we consistently keep all the terms in Eq, (49) to the
lowest order in &, then we heed to inzert only the zeroth-
order expression for E} into the right-hand side. Accord-
ing to Eq. (41), we Lave

[H7 (k, 0) + K7 (k, 0)] a;
au (\!;w ay

| LY (0, 8) = (50)

where H~ and K- represent the complex conjugate of H*
and K, respectively, Moreover, for simplicity, we have
defined

=5t €, — CR* 8 + P Ry ke (51)

Hence, after taking the ensemble-averaged value, we can
write Eq, (47) as

(LHY + K4] oy [H, 4+ K5 ] am)

= 2IM [(HY (k, w) + K4 (k,w))a; EX] (47)
0 (L (o, et)) _ y
o = 2r(Bi(o,et)) + 2Im (an ey a0 [w
where
y=- ik L (53)
[;} C ,\v“ ky ctk Slm .
m 5:“' ay " 4w Re €hy ) av

Let us restrict our discussion to the field associated with
the unstable mode. For that case, we may write

Ey{t, et) = Eqy (et) exp (—iuwg t)

'?"ai (C“ ah el + « Reej; (k, “’)) a;}} &

Do

a

Thus,

(Ei (o, et)) = lim .

A=0 JO

dv-exp [i{0 — T"‘AT]/ d+’

X exp [—i(w— wg) v’ — A7']
X (B (e7) Eox ("))

= lim ‘Lm/wd"'d"'exi? [i(o —w)){r— ) —A(r + )]

A=0D
X ({E% (et) Eox (t)) + O (e)}
= lim — 8 (& — wg) (Ef (et)) + O (&) (54)

A=D fat
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When we substitute expression (54) into Eq. (52), we
may ignore the fest-order terms in (54) since both 9 (ER)/ot
and 2y (ER) are already spontancously first order in e
Furthermore, we know that when o = o, (k), we may
write

1 _ {8 (0 — wy)
dpagy (k, wg) av ..5?;; [ap Re Gy (K, wq) tv]
78 (0 — wg)
[ 5
m[mf; ap Re efwau] (55)
and
1
0 c'kiky— c*k*S
wqa—mq'l:(ll( -t o 4 +quee*”)a;:|
_ 1
- 56
2 [uf a4 Re €, (K, ug) 2] (56)

amq

From Eq. (52) and relations (54), (55), and (56), we find,
after integrating over w throughout Eq, (52), that

W = 2y (k, uq) (E% (et))

9 (H% (k, wg) @y Hs, (K, wg) @)

+ lim
Amr0

(57)

T (wapRe € (k, wq) av] ’
q

Notice that in the source term of Eq. (57) all terms
proportional to K= vanish. The reason A (Hi{a, H;,a,) sor-
vives is that it contains a part which behaves like A~ (see
Appendix A), The final form of Eq. (57) is

%( L (et)) = 2y (k, wg) (EF (ct))

e +%0
[-+]
- 64t o} E E n, e [ dv) vy [ dv.
) [ o

8 No=-0

~ 8 (wg — 1 — ka02) | Q4 |* Fs (v, })

n
-

a 1]
o [w} au Re €}, (k, uy) ]
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where

N, a 2 ko
IQ:;IR= 03“: -I- -——-‘-'—-—'-"-cos.lf, 'f‘ -.J'-—'l;
k; Qu

+ af v§ sin® ¢ ]} (k:]ul) (59)
L]

In Eq. (58) and expression (59), the subscripts z and J.
denote the components of vectors parallel and perpen-
dicular to the magnetic field, y is the angle between the
vectors oy and ky, Q, = e, Bo/m, ¢, and J, and J, are the
Bessel function of nth order and its derivative, respee-
tively, The first term on the right-hand side may be con-
ceived to be proportional to the stimulated emission of
plasmons associated with momentum k and the second
term proportional to the spontaneous emission,

In deriving Eq, (58), we have assumed that
Iy (v) = I, (v, vf) (60)

The validity of this postulated condition may be
questioned if the unstable mode is propagated in a diren-
tion neither parallel nor perpendicular to the external
magnetic field By. One important point is that if the
plasma is initially eylindrieally symmetrical, there should
be no preferred direction of propagation in the plane of
symmetry, This is to say that if the aforementioned un-
stable mode exists, then other modes must exist which
bave the same propagation characteristics but are cylin-
drically symmetrical with respect to the magnetic field.
Consequently the symmetry condition is not violated.

Finally, since E; is the microscopic field, the quantity
(Ef) may be expressed as the sum of two parts, ie,

(Ep) = Tip + (SER)

where I is the ensemble-averaged field or the macro-
scopic field and 8E, the fluctuatior field, In the usual
quasilinear theory, it is assumed that

Ez >> (8L

and, on the other hand, the theory with correlation
considers

(GEf)>> Bt 0




V. The Kinetic Equation
Formally the kinetic equation may be expressed as

oF, e o ™, . A

= - — | dolim—

ot MMy BV oy a0 ™
k

- a} (E} (, et) NE(V, 0, t)
(61)

[}

o (o

Since I, is considered to be symmetrical in the v)-plane
and (E* N7¥) = (EtN%), we can average the right-hand
term of Eq. (61) over the azimuthal angle and retain only
the real part of it. Thus,

ors _ Cs .
ot z :m, n, ll_t,]; f dqb_/ dm
k.

e[+ U= ON gy Wiy, o)}
(62)

The evaluation of the right-hand term is shown in Ap-
pendix B. Here we shall simply state the result:

T i (1 8,0, 0
Bv.. ) Bu;_

L

{]Q |28 (wg — n0y — ko v2)

« " 4Py (05, 02)

a‘ (‘"G . Re E;u' (k: “’q) a")

The quantity |Q#|* is defined by Eq. (59).

Equation (63) is obtained in the guasilinear approxima-
tion in which the resonant diffusion process is considered
to be most important and the nonresonant contribution
and the ordinary collision integral are neglected. The
expression for the nonresonant contribution is somewhat
lengthy and may be found in Appendix B. The term pro-
portional to (E) is obtainable from the conventional
quasilinear theory. The extra term, or what we call the
friction term, is attributed to correlation.

VI, Conservation of Energy

It is important to examine the law of conservation of
energy from the equation just derived, However, since
the resonant diffusion process is important only in a
restricted region in the velocity space, it is conceivable
that in the discussion of conservation of energy and
momentum one must consider both resonant and non-
resonant contributions to the kinetic equation.

Let us study the resonant contribution by making use

of Eq. (63), We obtain
Nam
—= [ dP o F,]
2 f resonant

G|
at resonant at
8
=~—- 2" M € fdr:lvlf do.
k

+o0

X Z(k,v, + 702,)| Q%12 8 (wg — 124

— k.vy) - dam, Fy
Tor (o} ap Re €}, @)

(L‘;; (et)) nQ, oF,
mg (k; o, + 10 aD_L)i|

(64)

However, from Eq. (58) and definition (53), we find

2 0 (ER _ 27 0, €3
20 WhanRe el (ko) an) gy g = )

My
I

+0 ‘
o 160
x] dululf do,E 108128 (o — n2y — .02)
0 -t

'y 0 I, g Ol g
x 471'1713 Fn (l.'lq + (EE (gt)) kz 3 + nQ BF
4, ., av; v, vy
Ew—; (mq ay Re EL',, dp)
(65)

In Eq. {65), we have made use of expression for
ai Imej, (k, wg)

which is shown in Appendix C.
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Comparing Eqs. (64) and (65), we find

2 m= — o (Et
( )raumnnt - qu Oug [mqa;;ReeM(k “’q)av]at 8r

(66)

To caleculate the nonresonant contribution, we shall
employ the result given by Eq. (B-19) in Appendix B.
Wo see that

1Y _ mmy [
(Bt )Ilnnruﬂqnnnt _2 9 fd vov (Ia)nunreannnnl

#

" -"w
4zn, e w o0
-— vy dov 1 D) (ZU;
4ma M(l h) -t0
k 8

Hz=-00

oF,

x{agu,ﬁ.( o) +alcos¢( )Jigi
1 9F,

+alulsm~:,b "B—EBI

[ 1 1
+[ mqaqu ug — N6, '-‘U,,-:kg +qu_k;’v:_nﬂl]

/. oF, ng, 0F,\) |
X1l (g o o) o)

v, duy ,

However, from Appendix C, we know that

a-‘_l, RB E;V (k, lﬂq) ay

wg -] +e3

=1+271§ —,,—[ clvlulf dvs
= Oz fo ~-ta

<> ez

=~

oF, nQ, oF,
'nga kz Uy av: vy av.l.

or atn?Qd 1 BF
b 2 il L ul a
4 aiv. J2 30, -+ 7] cos xp],. avl
| 1 9F,
2 402 2 ra
+ a3 visin® ]}, o aul} (68)
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From (67) and (68), we obtain

1% _ 3 (E)
( at )nﬂuronunant B Z {[a.u Re e’tv (k’ wQ) aVJ .é? -‘g;IT.

1 @
+ P (o} ap Re €}, av)

X% 8 Ot Br

However, we know that

wa an Reet (k, u)q) = ¢ k? — ¢? an kp. kvay

py
Thus,

8
at notirosonnnt
_ ¢kt — ¢t G,u ku kv ay 0 (ER)
- 2 :{[ + 1]5 g} (70)

However, it is easy to verify that

zkz_. 2 thkv v : " 5 0
[ abebote ] gy = e e ety = B0
(71)

From Egs, (68), (69), and (70), we conclude that

U z (), BYY _
(E)totnl T ot ( 8w 8x ) =0 (72)
k

This proves that the sum of the particle energy and
energy associated with the wave fields is constant in time.

VII. Stationary Solution

In this section, we shall discuss the form of the time-
independent solution of I,, From the amplitude equation,
Eq. (59), we find that

+00
w0 +0
fdululf dv;E 8 (wg — nQy — k- 0:)| Q112
0 -0

o
{47,'(1:» oL gﬂl)(m 4y (167 )
o Toonsh }=0 -
San [mﬁapRee:fwav]
9



However, from the kinetic equation we also conclude
that any moment 1Y, i.e,

o
Ty = 2g f dvy v, f vy By (0, 01) Iy (v, U3)
1}

must be independent of time, Thus,

w hd] hid '
f dvy 6, f dv, E 8 (wg — 19y — ke v:) | Q3|
1] -t

el

oo nQ, oo olff, nQ, oF, .
><.\ 204 + vy 'c)U;,){‘l"(k’ U + oy aul)(EK')

F«B (U,-;, v:{)

4- My (167" u3) } = () (74)
)

aT (u)ﬁ ap Re 6:11, iy
L q ~

From Eqs. (73) and (74), we see that because @ is arbi-
trary, it must be true that

BF, nQ" aFﬂ s
{(k’ N o Bul)u"’?)

2T o ]
4 Ao B (v, ”i)} =0 (75)
Latre+uidy oy

?
—6:;;:(“% g Re Eﬁ‘, a_.,)

Let us assume that I, (v, 03) = g; (vs) g2 (v3). Hence,

([k: gl g: + 2nQ, g1 g2] @ + g1 0} Fevsnfizwy, 0

or
!’ A
|:k:"é,—l + 2nQ, E':-:l a=—1 (76)
é[ S Reve e 0l T
where
_EH 1 2,
*T 4 my v Dog (wq ap Re E;'n, a’!J) (77)
10

We now define

g'; '; n
s f1 (ve) and i fa (v) (78)

Since « is independent of v, v and n, the only choice of
fiand fy is

fi = —20; A, (79)
fa = — Ay (80)

where A, is a constant, Thus, from Eq, (76), we find the
condition

Qugad, =1 (81)
From Eqs. (78), (79), and (80) we can casily show that
Fo= g1 (vy) g (v) = Byoexp [—Ag (0§ -+ UI'.)] (82)

In Eq. (82), B, is a normalization coeflicient. Since we
require

O [ m’clul vy f mdv, Fy(v,03) =1 (83)
o B

we find that

ko

B, = (-’—‘-)"’ (84)

and A, may be identified with the thermal energy, such
that

_om,
AR - 2Xr11

Therefore, Eq. (82) showus that the time-independent
solution of Iy is the Maxwellian distribution. When this
state is reached, we see that, from Eq. (77),

daxT
(ER) = (3Ep) = -

1 (&)
'u_)‘;' ‘BT;,; (ﬂ)f:r a]], He Eﬁ‘, .ap)

for the mode with wave vector k and frequency w, How-
ever, since in this case —uw, (k) is also a root of the disper-

sion equation, the total value of (SE) should be

SWXT Mg

(8Lf), = (86)

'_"amq (m}‘} ap Re E;lv av)
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Equation (86) represents the energy spectrum of the fluc-
tuation field. When there is no external field and $E is
longitudinal, (86) reduces to

(SER) o dmyT (87)

which is well known.

VIII. Special Cases

In this section, we shall consider a number of special
cases for which the equations yield simpler forms, Dis-
cussion of these cases may facilitate the future applica-
tions of the theory.

A. Electrostatic Instabilities Without an External
Magnetic Field

The quasilinear equations for this case reduce to the
following form:

LI _mei A
ot '—Z my k:! ov
k
1 ,n\ 7
X J8(ukey)| = drfa(v) (ﬁ*’ (kaaz;)
. (RG et (k’ “’a)) ’
aﬂ)q

(88)

B(Fx) o wj My

x[cl“ ‘8 (m,,-k v) Py (v) (89)

RGG (k (ﬂq)
where
o} oF, 1
Reet(k,ug) =1 —I—Z P/fl“u(k- ™ )(m %)
(90)
y = il k d*v8{u—k- V)( '%)
s (Reer (ko)
(91)

If we consider electron oscillations and approximate

L (Re e (K, ug) = (92)

g
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then it is found that the form of Eqs, (88) and (89) reduces
to that obtained previously by Harris,! who formulated
the problem from a quantum mechanical approach, and
other authors (Refs, 12 and 13). However, two points
should be noted, First, in our theory the fleld Ey is the
total wave field (macroscopic field plus fluctuation fAeld).
In other words, we have

(ER) = Ef -+ (33

where Ty is the usnal macroscopic field, If the plasma
satisfies the conditions

I >> (sER (94)
and
dam, Iy (v)

2>> (95)
AV
[(k- ) R (o >>]

then Egs. (88) and (88) reduce to the conventional quasi-
linear equations, From this point of view, we can also see
that condition {94) alone is not sufficient to validate the
usual quasilinear equations, Condition (95) indicates that
when (k*8I7,/6v)s-us becomes very small—for instance,
when the “plateau” is asymptotically formed in the one-
dimensional “bump-on-the-tail” problem (Refs. 1 and 2),
the efficiency of stimulated emission of plasmons becomes
very Jow, and the spontaneous emission may become
significant,

L
1

Second, in deriving the equations, we have assumed
that the unstable mode has a frequency o, (k). In some
cases, when I, is symmetrical in velocity space, —u, (k)
can also be a root of the dispersion equation. Then, if we
define each propagating mode as consisting of both plus
and minus frequencies, the friction term in Eq, (88) and
the source term in Eq. (89) should be modified by a factor
of 2 and the energy density is defined as twice the pres-
ent value,

Finally, it is important to note that in the study of a
turbulent plasma in which ion-wave instability is playing
a major role, the spontaneous emission can be more sig-
nificant than that in the case of a growing Langmuir
wave, since the phase velocity of the ion wave is low com-
pared with the electron thermal velocity.

‘Notice that the contribution from the nonresonunt particles van-
ishes automatically since it is proportional to 2 (E2)/0t,

11



B, Electrastatic Instahilities With an External
Magnetic Field

The unified quasilinear equations in this case may be
obtained by setting ¢ = 0 (longitudinal waves):

e n, o
z ;E :m,.k-‘( au~+ v, aul)

N~

X {8 (00g = nQy — k2 02} J§ (]\l ul)

9 2 [Ree(k, mq)] m, 'dv- v, dvy
a g
(96)
Ti'e 2 ey +e
9 <L‘ﬁ) = 2y (Ef) + 18+% an',m.., dD;_ v le;,-
ot k* 0 -0

XZ ‘ nQ,—kw)],.F,,E v?)

oo [Re e* (k, w,)]

(97)

where the growth rate is

y =2 E %fﬂ clul-ui[mdu;
/] -t
S 8 —ng, — ks 1);) Ii (kl UJ.)

(’w oF, n no, 3F,,> 1 (98)

00 0 000/ D 1o (k)]
amq

We can see easily that when (w,/k:) < v,==thermal
velocity of the s-species particles, the friction term in
Eq. (96) and the source term in Eq. (97) can be very
important. Yet, these terms are not included in the usual
quasilinear theory,

C. Cyclotron or Alfvén Waves in a Magnetized Plasma

In this case, a. =k, = 0 and ¢ = =/2. Thus, we find
that |Qf[* =0 if ns& %1, and Q| = vi/4 if n = %1,

: So far we have considered that the wave is linearly
i polarized. In order to discuss a cyclotron wave, which is

12

circularly polarized, we may consider it as the superposi-
tion of two linearly polarized modes with a phase differ-
ence of =/2, This can be readily studied, and the result is
given as follows:

aru '.'rG,, , Qu 3
'm, Rz u,.' vy vy

X { § (wg — (2£0) — kyv;) 0¥

v [ Iy (vz, VY)
2
Pug

B () O, o, OF,
K 2m}-;m, ks o, =~ Uy aUL) (99)

(0)?; aﬂ, RG E:il' (Ip)

__._‘ 3 o +0
i) (aljl» o :2‘}' (Ep) + 47 o} E W} ﬂ%-[ dv, U_L/ dv.

8
D:i Fg (U:.'; Ui)
0
m(m% a’l. RG e}ip(kﬂ “-"a) av)

X 8 (g — (== Q) = kss)

i
-

(100)

where

=%Z
i

f dv, ul/ dv: 8 [wy — (=Q4) — ks 0,]

,-,r Uj_ B'DJ_

(101)

(mq a;: HG G‘.“ a;)

qu

It is understood that, in the expression

'a?q' (wiap Re €y ty)

we should set a, == k, == 0, Furthermore, the proper sign
to be chosen depends upon whether the wave is right- or
left-circularly polarized. It is useful to remember that Q,
is negative for the electrons and positive for the ions.
Thus from the argument of the delta function in Eq, (99)
or (100), we see that for the right-circularly polarized
wave (electron cyclotron wave) we should choose the
minus sign, otherwise the plus sign.
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IX. Summary and Discussion

Ono flaw in the usual quasilinear theory is that the
theory breaks down when the growth rate diminishes,
As this condition is approached, the process of resonant
diffusion becomes more and more ineflicient. For the
one-dimensional “bump-on-the-tail” problem, the “dying”
difhusion process eventually leads to an ambiguous re-
sult, namely, the formation of a plateau at a certain part
of the distribution function; and then the “quasilinear”
interaction comes to a complete stop. It is true that this
difficulty may be resolved by considering the three-
dimensional problem, However, the basic problem is still
there, although it appears less severe,

In this memorandum, we present a unified thecory
which includes both the macroscopic coherent fleld and
the microscopic fluctuation field, We are especially inter-
ested in the case in which the contribution to the pair
correlation from the propagating mode of the fluctuation
field is considerably more important than that due to the
nonpropagating modes and direct particle encounters, For
the sake of generality, we have considered both electro-
static and electromagnetic interactions, and also a magne-
tized plasma. The result may be summarized as follows:

an 7rG,, B + an 3
E ng v, oy,

HE=o0
>< IQ;IHS(U}Q——m;—k;Uz)

>< a 4“'1?5 (U_«_-, UE)
Py (wf ap Re €, (k, wg) av)
W My ov: v du
B 1]
= (R (e8)) = 2y (I q) (B (e8))
+ 647t @l E E N e,,[ dololf dv,

8 (wg — nQy — Kz 0:) | Q4|2 Fs (05, 0F)

X

Reel, (K, ar) ay

(103)
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where

. koo
+ a visin®y, {.”( > l)
£

Equations (102) and (103) show that the time-independent
solution of I, is the Maxwellian distribution, The con-
servation of particle and wave energy is also proved by
taking into nccount both the resonant and nonresonant
contributions.

The “friction” term in Iq. (102) and the source term in
Eq, (103) represent the spontaneous Cerenkov emission of
the unstable mode. The usual “collision integral”® is con-
sidered to be negligible in this case,

For the high-frequency electron wave, the spontaneous
emission term in Xq. (102) is admittedly small and of the
same order of magnitude as the collision term (Ref, 20).
However, for the unstable ion wave, the spontaneous
emission can be much more important than the collisional
contribution since the population of the emitting elec-
trons is high,

In deriving the amplitude equation, we have made use
of the adiabatic approximation; that is, we have treated
the distribution function as a time-independent quantity.
Strictly spesking, such an approximation may be incon-
sistent with the theory and, in principle, we should in-
clude the effect of slow variation of F, in the derivation.
However, such correction turns out to be rather insignifi-
cant in the quasilinear theory, as pointed out by several
authors (Refs. 6 and 30). Intuitively, this consequence is
conceivable from the following point of view. It is ex-
pected that the correction terms to the Landau growth
rate are proportional to the moments of oF, /8t since y is
independent of particle velocity. However, according to
the usual quasilinear theory, we know that only a narrow
region of the velocity distribution function evolves signifi-
cantly due to the resonant diffusion process, and the
change of the moment of the entire distribution function
with respect to time cannot be very large under ordinary

"The general collision integral has not been derived in this memo-
randum, However, when electromagnetic interaction is not im-
portant, the collision integral has been discussed by Rostoker
(Ref, 28).
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circumstances, Thus, the corrcction to the growth rate  However, it is possible to improve the theory so that it

cannot bo important,

can deseribe strong turbulence, It also appenrs desirable
to generalize the present theory to study instabilities

The theory established in the present work is fairly  originated by plasma inhomogeneity such as, for instance,
general excopt for the assumption of wenk turbulence,  the drift-wave instability, _
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Appendix A

Evaluation of the Source Term

The source term may Lo represented ns

S = lim 2A/ o § [an Be O ;]
|} " a
a0 e -(.;;-[a; Re oy, (K, o) a;]

(” 147 H' v}

8 (0= uy) 1677 *
3
—| [w*a; Re €} (k, w) a;]

X Zc,ze, [d“u(v-n) fdau'(w-n)

X f " At oxp Lot — At — ik x, (1)]
]

% fmclt’cxp[-imt’wAt’-i—ik-r’,(t’)]

0

X 11y 8178 [Va (£) = V2(")] F, (v () (A-1)

where we have nade use of Eq, (24). (Notice: other terms
do not contribute.)

If we “translate” the velocities such that v, () - v and
vs (') = v/, then correspondingly, we should translate v

to v, (—t) and v to v, (~#'), Hence, we can write
307
S=lima E me,[clu

a0 ’ [ﬂlqal RGGH k wq)aj]

X[mdtexp [fuwt — At + ikex, (~1)]
[4]

Xfwclf exp [ —fot’ — At — ikor, (—¥)]
]

X [va(—8)-a] [va(—t')+a]
X (v —v)Fy(v) {A-2)
In Eq. (A-2), we have replaced r, (t) by —r,(—t), and

1y (t)

by —r; (—1') because of the velocity translation.
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Integroting over v/ and utilizing the relations

Va(—8)ea = 0z0; ++ vya, [cos (¢ - 0, 8 cos ¢

- sIn (¢ = 2, t) sin ] (A-3)
thera(—t) =i (—t)] = ks, (t ~ V')
- i%ﬂ- [sin (¢p 4 02,8) -~ sin (¢ + 0, 2')] (A-4)
L]

where ¢ is the angle hetween the veetors k; and v, and
other quantities are defined after Eq, (59), we find that

'é""'," [w?} a; Re €jy (k: "’*?) aJ] M.:mth ThEetn

.[del[ clu,f dt/ dt’

Xexp liwg(t =)= At +1t') =~ inQ,t

3-411‘ Ll A E Ny 83
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S = lim
A= D

+ tmQ, t’ — im¢ + ing) {[a; Uy + Gy cosy (%):I

X ]u ((Y) - f(l—j_ vy sin 30];. (o:) }

X {I:a_, vy + @, cos g (—ﬂ;\?'ﬂ

X Jo () + fa vy sinyJl, (a)} Iy (v} (A-5)

where we have used the identity

+o
glaslng :Z I (a) ging

Ha~n

and ¢ is defined as

.kj, Uy
Q,

Fa'

Since we consider that
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the ¢-integration is non-zero only when m == n, Wo finally  where
conelude that

nn
Ot o3 1, 02 Qr = [ Vg tly bty COS Y (—-zf-)] In () =tz day vy sin s (o)
§ = !
] 3 (A7)
+00
' @ o " , nL\1*,,
X dosoy [ dv,) Q3 |Q4]* = { st aycosy T Ji (x)
0 =00
Ha«in
X 8 (wg — nQy = ks v,) I, (vg, 03) (A-G) + a0} sin? ¢Ii? () (A-8)
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Appendix B

Evaluation of the Interaction Term

The interaction term is denoted by I,, i.e.,

he =g, W [ ()
XZI: _{vea)k (v k) a ]

X (L} (o, et} Nk (v, o, eb)) (B-1)

where

NE (0, 0, of) = f ” db exp Lot — At — ik 13 (8)]

0

" _ Ny Cy
prd Ns (Vn (t),O) My

0 ayeby 3
X [ dt[ﬂa (w, et) + 1 —=2= M;(;t Iaf;]

X {exp [fur ~ A7 —~ ikery (7)]

X[a+ (vnm-a)kw— (va(r)'k>]~
S e

—_ 4wt N a9 gt ’
E} (w, et) = aramy (a) 0r Z e, fcl-’v (a+v')

r
Xfm drexp [for — Ar -+ ikex, (+)]
0
X N7 (ve(7),0) + & (B-3)
In Egs. (B-2) and (B-3), R and &; are two remainder
terms, Since, in the limit A — 0, R* and &; contribute only
to terms of order O (A), we may ignore both of them,
Hence,

hm "‘“(Ek (0, e8) NE (v, w, £t))

o 2ot
?wd (o —
= lira A { : 4n? wd (v — w,)

272
Ao ST —[m a”Ré{:‘uv (k ar) av]

XZ@,[(I% v af dr[ d+'

'r)— A(1-+1-)—zk-r,,(1-)

X exp [iw(r —

18

ik r ()] (N (v (), 0) N (v (), O))
- %ﬁwdr exp [fur — Ar — tkex, (7)]

X (E(w, ot) Ex (o, et))

(va(r) )k — (va(r) k) n OFs (va (7))
X [ o + a:l v, ('r)

_ M c,f'”dri 0 (L} (v, et) By (o, e1))
m ot

9 | \
X %Lexp (fur — Ar — 1kexy (7))

5 ((v,(r)-a)k:(va(r)'k)a+a):|

v, (1’)

. a_r_g@} (B4

As before, we see that in (N* N7¥) only the term which
consists of the delta function § [v,(r) — v} (+')] would
survive in the limit A — 0. Thus, we may simply write

(Ng (va (7),0) N¥ (vi. ("), O))
= 1y 8ar 8 [Ve (r) — Vi (/)] Fa (va (7)) (B-5)
Again, since we are particularly interested in the un-

stable mode o = u, (k), we may use expression (54) and
retain the lowest-order contribution,

Hereafter, we write I, = I! 4 I, From Egs. (B-5) and
(B-6), we have

eg oT a +o .
Il = — | dp—+| do lim
m3 1] av -t A0
k

[u+ (v'a)k'—(v'k)a]

5 2808 (0 — wg)

9
N [«?ap Re €, (k, 0) av]

xfds v a)/ dtf ar

X exp [io (¢ — /) — A(t + #) — ikex, (&) + ik, (£)]
X 8 [vs (8) = vi ()] Fy (vo (2)) {B-6)
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I = e [
T L am
k e

[ 2=

W

dé -a—e‘-"-- fmdw 5 (“’2;___"_12_)_,

-]

(V'k)a]

*[mn+ g 50 L]
L

% /‘(lrehp[fmr—0+7-fk ¥y (7))

(va{r)ra)k—

X

a -

(vo(7)' k) a:| ok, (VE ()-r))}
v, (7

(B-7)

In the following, I! and I¥* will be discussed separately,
First, in Eq. (B-6) we notice F,(v.(#)) = &, (v) because
we consider F, (v) = F, (v, v3). Integrating over v’ and o,

we find that
9. [a + (vea)k — (v-k)a:l
A4 L) '

e, 27
| - fonhell B’ :
n=y

< lim _ A f mdt
A0 m [wiauRe G?;,, (k, wg) av] ’

X [ " oxp[iog (£ — ) — A (£ + 7)
—iker, (¢~ )] [a+ve(t — )] Fa(v) (B-8)

In obtaining expression (B-8), we have introduced a
“velocity translation” by equeting v (#') to v, (f). Corre-
spondingly, we find that

) =xi({t) ~ri(0)> 1. () —x, (¢ ~ 1) (B-9)
Vo vt — ) (B-10)
We shall designate r = ¢ — ¢’ and employ the relations

asv,(r) = a. 0. +v.04

X [cos ¢ cos (¢ = Q,7) — sinysin (¢ — Qy7)]
(B-11)
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kony () = kyver = S sin (p = 0,r)  (B-12)

After some algebra, we obtain

Il - 41‘!‘ en an a
‘ m, Bv, v, Bu
k

-2 ]
X IQ;I28(NQ— nﬂ,, — kyvg} F‘ (V)
ERP
amq [a)q ane G"", a,.]

(B-13)

where all notations have heen defined previously (sce
Appendix A).

We next study I}, If we define

A=aq+ (Vs (t) * ﬂ)k ": (Va (t) 'k) a (B-14)
g
then we see that
BFJ VJ t [ Fas P Pl
A'-ﬂg\'r%(_t()_)lz [(b+A)b+ (b X A) X beosQ,t

~ oF, (v)

~ (AX D) sint] - —X (B-15)

where I, (v) = F, (s, v3) and b is a unit vector parallel
to By, From Egs. (B-7), {3-14), and (B-15), we can show
that

]
3 QP
L z :2m37rf {av,

v [(“= + v ay ks cos (¢ + ¢) —

g

ki v a, cos ¢)

1 2
P (k.‘!, k.l.s D:.": UJ., mq)] + '1-)" HB_U'_ [U_L (a_L COs (¢ + l‘b)

-+

Vs .k cos ¢ — v, a, k. cos (¢ + ‘P))

Wy

P (k;\;, k_L, ﬂ-".‘: Ul: l’.ﬂq) :I}

(B-186)
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where

I1’=[(Eﬁ(t))+—;--§%a%q]{j;wdt

X exp [iwgt — Oyt — ik v, 1]

X exp [i %’i [sin(¢p — Q,t) — sin 4;]:| [(az
[} \

via kycos{p ¢ — Q) —

g

kivia;cos (¢ — Q, t))

X%g—‘-}- (mcos(cj;+n,h-9.t)

L kicos(p—Q,t)

—v.kyayc08(¢p+ v —Q, t)) aFa]}

ﬂJq avj_
(B-17)

After some algebra, we find that Iif may be expressed
as the sum of two parts, say (I:I)runonnnt and (I:I) nonresonants
and they take the following form:

(Iir)reaounnt = E 11'"@,, T“LQ, a
m@ 0};1 : vJ_ aD,L .
k

v

X {8 (0g — 0y — ke 02)| Q})?

nm olf,
X (k av., o1 )} (LR

(B-18)

20

+o9

e; 3
2mi v} 2 :{'a'ﬁ: [(a= (0g — 124} ] (a)

MNirwii}

(I{I)umlrnnnnun t =

+ “‘% nQ, cos yJy (@)

~ ia, v, ky sin bl (a)) R (0g, vy, ks, K1, mq)]

1 9 NnQ,
-[.. -131- E [(aj. (ﬂ'}q =~ Dy k?) cos 'pI" (R) T

+ a0 1Q, I ()

- i(t_l, Uy, (ﬂ)q - k,m; Ug) Sin Ilb];' (a))

xm%%hmm} (B-19)
where
ol cos nQ, o,
{aw In ((\’) a 2 + .l. lp ]" ( ) ,Dl 301_
1

+ iay sin ‘P];' (“)-5'0-% + [P g — Ny — kzv:‘:

2,
@0 a(!)q g — m;] = .k;' Ve

olF, nq,oF,\} 9(ER
X Q:' (kz av;. + 0y BU_L)} ot

(B-20)

In the quasilinear theory, (I'') ssonunt is supposed to be
much more important than (I"uonresonants Which repre-
sents the contribution from the nonresonant part, and
thus the latter is often neglected.
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Appendix C

Evaluation of ¢,¢. (k) a,

By definition, we havo

n, e
tp €y () av = apay —— Im —= [ d*v(v+n)
W Amb

xJI'”dtexp [iot — AF = i1, (£)]

i

v |:n + kasve(8)) = (v (£)+ k) a:|

8L (v (1))
T v ()

“l——zua, lml /‘rlJ ] dt {(vi (—1t)+ a)

X exp [lut — At -+ 1kex, (—t)]
5 |:n n k(vea) :— (v+k) a} or, (v)

ov

=1—-—’-§ :m;-;lim/dnu/ dt
w A= 0 0
]

X [veas + vy 0y (cos g cos (¢ -+ Q,t)

— sinysin (¢ -+ Q, )] exp [imt —~ A — kvt

— kévl (sin (¢ + 2, ¢) — sin 4;):| { |:a,,
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-

vy, ks (00S ¥ €08 ~ siny sin ¢) ~ Ky vy, cos :},:l
(]

I,
pd %—-—- + [(u_ (cos ¢ cos ¢ ~— sin ¢ sin ¢)
Vs iy Ky COS b — 0y Ky 1y COS P COS p
w
vy ky 0y sin g sin ¢ 7 8.\
aUJ_ f

-

+ (C-1)

[}

where wi = 4r n, e3/m, and the other notations are similar
to those used before, After some manipulavions, we obtain

4 [ o I“u
ap€ly (ko) ay =142 E = ] do, v, f dv, {ﬂ Uy = o
0 Jy 0 vy
&
+n ¢ 2 i I
aynsly e KLUL
2 [ e ()

H==td
+ @i visin® ¢ Jit (kgvl):l ”]:‘

}+2n— E f delf dv.
|Q1l
>< Z - k~ ~ ﬂQg + io.g..

olf, nQ, ok,
.0
X {L ot am}_ (C-2)
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